Dynamic Origin-Destination Estimation in TRANSIMS using Parallel Semi-Heuristic Algorithms

Adel W. Sadek, Ph.D. Associate Professor

TRANSIMS: Applications and Development
Workshop
Argonne National Laboratory
April 8, 2010

Motivation

- Increased resolution requires:
 - Dynamic Demand
 - Fine-grained network

Objective:

 The ability of Heuristic search techniques (e.g. Genetic Algorithms) to aid in the adjustment and/or calibration of dynamic demand

Motivation

- The goal is:
 - Given a priori known Origin-Destination (O-D) matrices, and hourly field traffic counts, how can we estimate (or calibrate) the time dependent O-D matrices

www.buffalo.edu/reachingothers

Dynamic O-D Estimation (DODE)

- From an analytical standpoint, DODE is typically formulated as a bi-level programming problem
- The problem is very difficult to solve, and several approaches have been proposed
- A fine-grained network and a simulation-based approach introduces more complexity, and precludes an analytical, closed-form solution

DODE in the context of TRANSIMS

- Challenges:
 - Detailed modeling of traffic dynamics
 - More than one O-D matrix
 - Randomness within the traffic assignment process
 - Run-time is quite long

Traffic Assignment in TRANSIMS

- TRANSIMS separates traffic assignment and microsimulation into two stages
- Router performs all-or-nothing assignment using a time-dependent minimum impedance path algorithm based on the travel time on each link
- Micro-simulator then purely loads the plans given by Router (i.e. vehicles are not dynamically re-routed).

Approximating User Equilibrium in TRANSIMS

Heuristic Search Algorithms (HSA)

 Used when an optimal solution cannot be mathematically found, and an exhaustive search cannot satisfy the given time / space constraint

Examples:

 Tabu Search, Simulated Annealing, Genetic Algorithms, Smarm Intelligence, ...etc.

Genetic Algorithms

www.buffalo.edu/reachingothers

GA and Micro-simulation

- Advantages:
 - Do not require gradient information
 - Rather robust
 - Can overcome combinatorial explosive problems
- Several examples in the literature regarding simulation model parameter calibration, where the search space is relatively small

UB-GA for TRANSIMS

- Challenges include:
 - Very large search space of the problem
 - Computational requirements of running TRANSIMS
 - Memory usage
- A new software named UB-GA for TRANSIMS, is being developed in Java

UB-GA for TRANSIMS

www.buffalo.edu/reachingothers

UB-GA Highlights

- For evaluation, candidate solutions are translated from a memory data structure into TRANSIMS text-based input format
- After the TRANSIMS run is completed, UB-GA detects the "finished" event and reads TRANSIMS output text
- Simulated volumes are then extracted from the output files and compared against the field counts.
- Genetic operators are custom-designed.

UB-GA Highlights (cont.)

- HashMap for storing sparse matrices
- A "hibernation" ability added so that when a GA individual is not active, it would be written to the harddisk and released from memory
- Parallel implementation of the GA

UB-GA Plan Analyzer

Plan Analyzer analyzes the TRANSIMS plan file to identify the origin and destination pairs that contribute to the links where field counts are available

Experimental Results

Destination Origin	1	2	3	4	5	6	7	8	9
1	0	10	10	100	10	10	10	10	10
2	10	0	10	100	10	10	10	10	10
3	10	10	0	100	10	10	10	10	10
4	10	10	10	0	10	10	10	10	10
5	10	10	10	100	0	10	10	10	10
6	10	10	10	100	10	0	10	10	10
7	10	10	10	100	10	10	0	10	10
8	10	10	10	100	10	10	10	0	10
9	10	10	10	100	10	10	10	10	0

ı	_ 4 5					7				8 8							
121		ر		7 1		6		19					9				
		12	•	14		129 129	18 Q		20	2.]	ز 22	25 🤈		24		
	122	27	28	29	ac	35 31		33 8 48	9E 35		3	8 37		40		39 131	
ſ	123	42	43	44		46 47		48 48	50	51	:	ቻ 52)	95	į	132	
	124	57	58	3 5	9	61 61		63 64	65 '	99 4	(% 57		71 71	5	133	
	125	72	73	74	C/	76 76		6 <u>/</u> 78	80	81	8	£ 32		98 85	8	75 134	
ľ	126	87	88	89	96	6 91	I		96 95		9	97		100		135	
	127	102	103	6	1	108 108		111 115	114 /	115	1	17	1	137	3 1:	0 136	
	128	138	104	139	14	10 110	1	113	142	116	14	3		1	1	44	

Results

Results

Next Steps

- Test UB-GA for TRANSIMS on realistic, large-scale networks:
 - A TRANSIMS model of the UB north campus
 - A TRANSIMS model of Chittenden County, VT
 - A TRANSIMS model of the Buffalo-Niagara region

Acknowledgements

- My Graduate Students & Colleagues:
 - Shan Huang, Ph.D. Candidate
- FHWA:
 - Brian Gardner
- UVM Transportation Research Center
 - Dr. Lisa Aultman-Hall